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AI and control

Current AI boom.

Many AI problems are control problems.

Sequential decision making ≡ control.

Usual control framework: Stochastic optimal control.
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Success stories

Examples of successful automated sequential decision making:

1997: IBM — Deep Blue vs. Garry Kasparov (chess).

2011: IBM — Watson in Jeopardy! (quiz show).

2017: DeepMind (Google) — AlphaGo (Wéiq́ı).
Then AlphaZero (chess, etc.).

2019: Facebook and CMU — Pluribus (poker).

2021: Matt Ginsberg — Dr. Fill (crossword).

https://commons.wikimedia.org/w/index.php?curid=15223468
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Motivation

Sequential decision making: Typically computationally
intractable.

Usual approach: Resort to approximations and heuristics.

Downside: Often no performance guarantees.

Current solution: Rely on empirical verification.

This talk: Introduce method to bound performance.

From [Liu, Chong, Pezeshki, and Zhang (“LCPZ”) (LCSS
2020)] and related past and ongoing research.

Caveat: Cannot explain all mathematical details here.
Will highlight only key points.
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Stochastic optimal control: Closed-loop system

Control Action State

X — set of states.
xk ∈ X — state at “time” k (discrete).

U — set of control actions.
uk ∈ U — control action at time k.

h : X × U ×W → X — state-transition function.
xk+1 = h(xk, uk, wk) with {wk} i.i.d. on W; x1 given.

πk : X → U — policy (state-feedback control law).
uk = πk(xk) (πk can be random).
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Stochastic optimal control: Reward

Control Action
Reward

State

r : X × U → R+ — reward function.

r(xk, uk) — reward at state xk with control action uk
(r can be random).
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Stochastic optimal control: Optimization problem

Objective function — expected cumulative reward.

Total reward over time horizon K (integer):
K∑
k=1

E[r(xk, πk(xk))|x1]

Decision variable — policy (π1, . . . , πK).

maximize
(π1,...,πK)

K∑
k=1

E[r(xk, πk(xk))|x1]

subject to xk+1 = h(xk, πk(xk), wk), k = 1, . . . ,K − 1

x1 given.
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Stochastic optimal control: Remarks

State trajectory depends on policy.

Also called Markov decision problem (MDP) (or process).

Framework also for sequential decision making in AI.

AI planning ∼∼∼ optimal control;
see, e.g., [Bertsekas and Tsitsiklis (1996)].
Brief history in [Chong, Kreucher, and Hero (DEDS 2009)].

Can also incorporate partial observations (POMDP).

Output-feedback control.
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Example of classical stochastic optimal control

Our optimal-control problem statement is very general.

Well-known classical example: Linear-Quadratic (LQ) control.

h(xk, uk, wk) = Axk +Buk + wk

r(xk, uk) = x>k Qxk + u>k Ruk

Kalman et al., circa 1960. Now well covered in textbooks.

But still a current research topic:

e.g., [Bioffi, Tu, and Slotine (2020)], [Gama and Sojoudi
(2020)], [Zheng, Tang, and Li (2021)].

For technical reasons, we focus on finite X and U .

More common in modern applications and implementations.
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Dynamic programming

Optimal policy (notation: superscript ∗):

(π∗1, . . . , π
∗
K) := argmax

(π1,...,πK)

K∑
k=1

E[r(xk, πk(xk))|x1]

Expected value-to-go:

V ∗k+1(xk, uk) :=

K∑
i=k+1

E[r(x∗i , π
∗
i (x
∗
i ))|xk, uk].

Dynamic-programming equation [Bellman (1957)]:

π∗k(xk) = argmax
u∈U

{r(xk, u) + V ∗k+1(xk, u)}, k = 1, . . . ,K.
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Approximate dynamic programming (ADP)

Can compute optimal policy from dynamic-programming
equation.

Value iteration, policy iteration, linear programming, etc.

But practically intractable.

Curse of dimensionality [Bellman (1957)].

Approximate expected value-to-go V ∗k+1 by V̂k+1.

ADP policy (notation: hat):

π̂k(xk) = argmax
u∈U

{r(xk, u) + V̂k+1(xk, u)}.

Same as dynamic-programming equation except
V ∗k+1 replaced by V̂k+1.
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Examples of ADP schemes

Myopic — V̂k+1 = 0.

Reinforcement learning — V̂k+1 by training neural net.

Rollout — V̂k+1 from base policy.

Model-predictive control (MPC)
Open-loop feedback control (OLFC)
Parallel rollout (multiple base policies)

Hindsight optimization — V̂k+1 by optimizing action sequence
per sample path.

See, e.g., Bertsekas’ ADP book (2012).
Also [Chong, Kreucher, and Hero (DEDS 2009)].
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Overview of approach

Goal: Bound the performance of an ADP scheme.

Approach:

1. Prove key bounding theorem for greedy schemes.

Bound depends on curvature of objective function.

2. Apply key bounding theorem to derive bounding result for
ADP.

3. Develop method to estimate curvature.

Use Monte Carlo sampling.
Must be computationally “easy.”
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What kind of bound?

Recall goal: Bound the performance of an ADP scheme.

Form of result: “Objective function value of ADP scheme
relative to optimal is no worse than ...”

Two kinds:

Difference between values of ADP and optimal policy.
Ratio of values of ADP and optimal policy.

Normalized difference bound ≡ ratio bound.

Difference bound: See Bertsekas’ textbook (2017).

Here: Ratio bound.
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General string-optimization problem

Temporarily put optimal control and ADP aside.

Instead, consider general string-optimization problem.

A — set of symbols.

A = a1a2 · · · ak — string of symbols with length |A| = k.

AK — set of all possible strings of length up to K,
including empty string ∅. (Uniform matroid of rank K.)

f : AK → R+ — objective function. WLOG, f(∅) = 0.

maximize f(A)

subject to A ∈ AK .
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More terminology and notation

Terminology and notation used in discrete event systems.

Given A = a1a2 · · · am and B = b1b2 · · · bn) in AK , define
concatenation: A⊕B := a1 · · · amb1 . . . bn.

A is a prefix of C if C = A⊕B. Notation: A � C.

f is prefix monotone if ∀ A � B ∈ AK , f(A) ≤ f(B).

f is subadditive if ∀ A � B ∈ AK and a ∈ A,
f(B ⊕ (a))− f(B) ≤ f(A⊕ (a))− f(A).

Subadditivity also called diminishing-return property.
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Optimal and greedy solutions

Default assumption: f prefix monotone
=⇒ ∃ optimal solution with length K.

Optimal solution: OK = (o1, . . . , oK).

Greedy solution: GK = (g1, g2, . . . , gK) is called greedy if
∀ k = 1, 2, . . . ,K,

gk = argmax
a∈A

f((g1, g2, . . . , gk−1, a)).

Greedy scheme ≡ At each time, select best symbol
independently of other times.
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Curvatures

Recall goal: Introduce general theorem on bounding greedy
schemes for string optimization.

Ratio bound: f(GK)/f(OK) ≥ ...
Bound depends on certain numbers called curvatures.

Two types: forward curvature and total curvature.

Notation: Given any A = (a1, a2, . . . , ak) ∈ AK and
i, j ∈ {1, . . . , k}, denote Ai:j := (ai, . . . , aj) if i ≤ j and
Ai:j = ∅ if i > j (MATLAB notation).
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Forward curvature

Define forward curvature of f as

σ := max
0≤i<j≤K

(
1− f(G1:i ⊕ (oj))− f(G1:i)

f(G1:i ⊕Oi+1:j)− f(G1:i ⊕Oi+1:j−1)

)
where G1:0 := ∅ and Oi+1:i := ∅ for all i ∈ {0, . . . ,K − 1}.
Expression akin to a normalized second-order difference.

To see this, complete the fraction.
σ = bound on normalized second-order difference.

f prefix monotone ⇒ 0 ≤ σ ≤ 1.

f subadditive ⇒ σ = 0.

Edwin K. P. Chong CCC 2021 19 / 39



Introduction
Technical Preliminaries

Technical Approach
Bounding ADP Schemes

Curvature estimation

Total curvature

Define total curvature of f as

η := max
1≤i≤K−1

Gi:1 6=0

K

K − i

(
1−

f(G1:i ⊕Oi+1:K)− K−i
K f(OK)

f(G1:i)

)

f prefix monotone ⇒ η ≤ f(Ok)/f((g1)).

f subadditive ⇒ η ≥ 0.
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Key bounding theorem

Theorem

Key bounding theorem. Given f : AK → R+ prefix monotone,

f(GK)

f(OK)
≥ 1

η

(
1−

(
1− η1− σ

K

)K)
.

Slightly stronger than in [LCPZ (LCSS 2020)].

Inspired by bounds in submodular optimization theory (orig.
[Nemhauser (1978)]), akin to convex optimization.

Submodular ≡ prefix monotone and subadditive.

See survey paper [LCPZ (DEDS 2020)] and its references.
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Remarks on key bounding theorem

Key bounding theorem does not require submodularity.

Bound is tight.

Both curvatures involve OK . Best we can do is bound
curvatures from above (discussed later).

Bound is decreasing in σ and η ≤ K/(1− σ).
∴ If replace σ and η by upper bounds, theorem still holds.

As η ↘ 0, bound ↗ 1− σ.

As K →∞, bound ↘
(
1− e−η(1−σ)

)
/η.

If σ = 0 and η = 1, then limit = (1− e−1).

Familiar in submodular optimization theory;
e.g., [Nemhauser (1978)].
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Key idea

Now back to optimal control and ADP.

Recall optimal-control objective function:

K∑
k=1

E[r(xk, πk(xk))|x1]

Decision variable: (π1, . . . , πK).

Key idea: Given an ADP scheme,

define associated string-optimization problem,
then apply key bounding theorem.

String: (π1, . . . , πK).

Here, symbol = policy.
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String-optimization problem for optimal control

Define (for k = 1, . . . ,K − 1 and V̂K+1(·, ·) := 0)

f((π1, . . . , πk)) :=

k∑
i=1

E[r(xi, πk(xi))|x1] + E[V̂k+1(xk, πk(xk))|x1]

= E[r(xk, πk(xk)) + V̂k+1(xk, πk(xk))|x1]

+

k−1∑
i=1

E[r(xi, πi(xi))|x1].

When k = K, f becomes objective function for original
optimal-control problem (expected cumulative reward).

Maximizing f solves optimal-control problem.
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Greedy policy-selection scheme for optimal control

Define greedy policy-selection (GPS) scheme: For
k = 1, . . . ,K,

πgk := argmax
π

E[r(xgk, π(xgk)) + V̂k+1(x
g
k, π(xgk))|x1]

where xgi+1 = h(xgi , π
g
i (xgi ), wi), i = 1, . . . , k − 1,

and xg1 = x1 (given).

GPS scheme is greedy scheme for f .

Thus, key bounding theorem applies.
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ADP scheme for optimal control

Recall ADP scheme: For k = 1, . . . ,K,

π̂k(x̂k) := argmax
u

{r(x̂k, u) + V̂k+1(x̂k, u)}

where x̂i+1 = h(x̂i, π̂i(x̂i), wi) for i = 1, . . . , k − 1,
x̂1 = x1 (given), and V̂K+1(·, ·) := 0.

Looks just like GPS except:

argmax is over control action u ∈ U
No expectation (E)
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ADP is also GPS

ADP control action depends on state trajectory.

But ADP scheme still defines a particular policy.

Theorem

Any ADP scheme is also a GPS scheme.

Proof: By induction on k.

ADP scheme is also greedy scheme for f .

Key bounding theorem applies to ADP scheme.
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Bounding ADP

Combining the previous ideas, we get our main result:

Theorem

Let (π∗1, . . . , π
∗
K) be an optimal policy. If f is prefix monotone,

then any ADP policy (π̂1, . . . , π̂K) satisfies

f((π̂1, . . . , π̂K))

f((π∗1, . . . , π
∗
K))
≥ 1

η

(
1−

(
1− η1− σ

K

)K)

where η and σ are curvatures of f .

But how to compute or estimate η and σ?
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Upper bound for curvature

Given f , estimate upper bounds for curvatures η and σ.

Recall: Cannot compute curvatures exactly because they
involve OK .
Key bounding theorem applies to upper bounds on curvatures.

Focus on η (similar treatment applies to σ).

By definition of η, immediate upper bound given by

η ≤ max
A∈AK , |A|=K
1≤i≤K−1

K

K − i

(
1−

f(G1:i ⊕Ai+1:K)− K−i
K f(A)

f(G1:i)

)
.

Computing G is easy.

But max over (A, i) probably hard because of A ∈ AK .
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Approach

Use Monte Carlo sampling to estimate upper bound η̂.

Want η̂ correct with high probability.

Curvature-estimation algorithm:
Given ε, δ ∈ (0, 1), output η̂ with the following desired
properties relative to true curvature η:

P{η ≥ (1− ε)η̂} = 1 (η̂ not too large)

P{η ≤ η̂} ≥ 1− δ (η̂ not too small).

Related work: Testing submodularity for order-agnostic
problems [Parnas and Ron 2002], [Sheshadhri and Vondrak
(2010)], [Blais and Bommireddi (2016)].
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Curvature-estimation algorithm

1. Generate J samples s1, . . . , sJ where sj = (A(j), i(j)),
A(j) ∈ AK , |A(j)| = K, and 1 ≤ i(j) ≤ K − 1.

2. For each sample s, define H(s) :=

K

K − i(s)

(
1−

f(G1:i(s) ⊕Ai(s)+1:K(s))− K−i(s)
K f(A(s))

f(G1:i(s))

)
.

3. Output

η̂ :=

(
1

1− ε

)
max
1≤j≤J

H(sj).
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Properties

Our algorithm automatically satisfies first property:

P{η ≥ (1− ε)η̂} = 1.

Does it satisfy second property:

P{η ≤ η̂} ≥ 1− δ?

Depends on ε, δ, sampling distribution, and number of
samples J . Also depends on distribution of f if we view f as
random.

Fix ε, δ, sampling distribution, and distribution of f .
Treat J as variable.
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Sample complexity

Exhaustive search: J = total number of possible pairs (A, i).

J = |A|K(K − 1) (i.e., scaling law is exponential in K).
|A| might be exponential in some other problem parameter
(e.g., number of states).
Exponential in problem size =⇒ impractical.

Sample complexity of algorithm: Number of samples J needed
to satisfy second property P{η ≤ η̂} ≥ 1− δ (or
P{η̂ < η} ≤ δ; i.e., δ = constraint on prob. of error).

Sample complexity must be small relative to exhaustive search
(e.g., J = polynomial in problem size).

Turns out not too difficult.
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Probability of error

Need J sufficiently large for P{η̂ < η} ≤ δ.

Recall:
(1− ε)η̂ = max

1≤j≤J
H(sj).

Therefore,

P{η̂ < η} = P

{
max

j=1,...,J
H(sj) < (1− ε)η

}
= P{∀j = 1, . . . , J, H(sj) < (1− ε)η}

i.e., probability that all J samples erroneous.

Will decrease as J increases.
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Example: i.i.d. sampling

Suppose sampling is i.i.d.

Using previous equation with p(ε) := P{H(sj) ≥ (1− ε)η}
(probablity of correct sample),

P{η̂ < η} = P{∀j = 1, . . . , J, H(sj) < (1− ε)η}

=
J∏
j=1

P{H(sj) < (1− ε)η}

= (1− p(ε))J .

Taking natural log, sample complexity given by

J ≥ log(1/δ)

− log(1− p(ε))
.
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Example: i.i.d. sampling (cont.)

Simplify using inequality

1

− log(1− p(ε))
≤ 1

p(ε)
.

We get the following simple sufficient condition on J :

J ≥ log(1/δ)

p(ε)
.

Sample complexity increases with decreasing δ and p(ε).

As expected.
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Example: uniform sampling

Suppose sampling is uniform i.i.d.

Then p(ε) = fraction of possible samples s such that
H(s) ≥ (1− ε)η; i.e., all possible samples for which H(s) is
within a factor of (1− ε) of its maximum possible value.

Recal: Usually express sample complexity in terms of scaling
law as problem size grows.

Reasonable assumption: As problem size grows, p(ε) = Ω(1)
(i.e., bounded away from 0).

This implies that sample complexity is O(1) (i.e., bounded).

Even if p(ε) decreases polynomially, sample complexity grows
only polynomially.
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Summary

Alas, time’s up!

Introduced method to bound performance of ADP schemes.

Showed derivation and key results.

Described algorithm to estimate curvature and analyzed
sample complexity.

No time to show practical examples. (Future talk ...)
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Questions?

edwin.chong@colostate.edu
www.edwinchong.us
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