Approximate Dynamic Programming and
Performance Guarantees

Edwin K. P. Chong

Colorado State University

Chinese Control Conference
Keynote, 27 July 2021

Ack.: Ali Pezeshki, Yajing Liu, Zhenliang Zhang, Bowen Li.
Partially supported by NSF grant CCF-1422658 and CSU ISTeC.

CCC 2021 1/39

Introduction

Al and control

Current Al boom.
Many Al problems are control problems.

Sequential decision making = control.

Usual control framework: Stochastic optimal control.

CCC 2021 2 /39

Introduction

Success stories

Examples of successful automated sequential decision making:
@ 1997: IBM — Deep Blue vs. Garry Kasparov (chess).
e 2011: IBM — Watson in Jeopardy! (quiz show).
@ 2017: DeepMind (Google) — AlphaGo (Wéiqi).
Then AlphaZero (chess, etc.).
@ 2019: Facebook and CMU — Pluribus (poker).
@ 2021: Matt Ginsberg — Dr. Fill (crossword).

https://commons.wikimedia.org/w/index.php?curid=15223468

CCC 2021 3/39

Introduction

Motivation

Sequential decision making: Typically computationally
intractable.

Usual approach: Resort to approximations and heuristics.
Downside: Often no performance guarantees.
Current solution: Rely on empirical verification.

This talk: Introduce method to bound performance.

e From [Liu, Chong, Pezeshki, and Zhang (“LCPZ") (LCSS
2020)] and related past and ongoing research.

@ Caveat: Cannot explain all mathematical details here.
Will highlight only key points.

CCC 2021 4 /39

Technical Preliminaries

Stochastic optimal control: Closed-loop system

Tkl = h(ﬂ?k, Uk, wk)

State
T

Control Action
Up = Tk (:I?k)

o X — set of states.
o x) € X — state at “time” k (discrete).
@ U — set of control actions.
e up € U — control action at time k.
@ h: X xU xW — X — state-transition function.
o Tpi1 = h(xg, ug, wy) with {wg} i.i.d. on W; x; given.
e 7 : X — U — policy (state-feedback control law).
o uy = m(xg) (7 can be random).

CCC 2021 5/39

Technical Preliminaries

Stochastic optimal control: Reward

Control Action Tr+1 = h(l'k, Uk wk)

. (mk) Reward

o r: X xU — Ry — reward function.

o r(xk,ur) — reward at state z;, with control action uy
(r can be random).

CCC 2021

6/ 39

Technical Preliminaries

Stochastic optimal control: Optimization problem

@ Objective function — expected cumulative reward.
o Total reward over time horizon K (integer):

K
> Elr(w, mr(w)) 2]
k=1

@ Decision variable — policy (71, ..., 7K).

K
maximize ZE[T(wk,Wk(xk))‘xl}

(T1,emi) 1

subject to zp41 = h(zk, mr(zg),wg), k=1,..., K — 1

r1 given.

CCC 2021 7/39

Technical Preliminaries

Stochastic optimal control: Remarks

@ State trajectory depends on policy.
@ Also called Markov decision problem (MDP) (or process).

@ Framework also for sequential decision making in Al.

e Al planning & optimal control;
see, e.g., [Bertsekas and Tsitsiklis (1996)].
o Brief history in [Chong, Kreucher, and Hero (DEDS 2009)].

e Can also incorporate partial observations (POMDP).
o Output-feedback control.

CCC 2021 8 /39

Technical Preliminaries

Example of classical stochastic optimal control

@ Our optimal-control problem statement is very general.
@ Well-known classical example: Linear-Quadratic (LQ) control.
h(l‘k, Uk, 'U}k) = Az + Buy + wg
r(zp, ug) = x;—Ql‘k + u;—Ruk
@ Kalman et al., circa 1960. Now well covered in textbooks.
o But still a current research topic:
e e.g., [Bioffi, Tu, and Slotine (2020)], [Gama and Sojoudi
(2020)], [Zheng, Tang, and Li (2021)].
@ For technical reasons, we focus on finite X and U.

o More common in modern applications and implementations.

CCC 2021 9/39

Technical Preliminaries

Dynamic programming

e Optimal policy (notation: superscript *):

K
(n],..., 7)) := argmax ZE[T(xk,ﬂk(xk))\xl]

(7T17---771'K) k=1
@ Expected value-to-go:

K

Vi (e) :=) Blr(ef, of (@) lan, wl:
i=k+1

e Dynamic-programming equation [Bellman (1957)]:

T(w) = argmax {r(zp, u) + Vil (apw)} | k=1,..., K.
ueld

CCC 2021 10 / 39

Technical Preliminaries

Approximate dynamic programming (ADP)

@ Can compute optimal policy from dynamic-programming
equation.
o Value iteration, policy iteration, linear programming, etc.
@ But practically intractable.
o Curse of dimensionality [Bellman (1957)].
@ Approximate expected value-to-go V', ;| by Vk+1.

e ADP policy (notation: hat):

(k) = argmax {r(@r, w) + Vi (we, u))
IS

Same as dynamic-programming equation except
Vi, | replaced by Vii1.

CCC 2021 11 /39

Technical Preliminaries

Examples of ADP schemes

Myopic — Vk+1 =0.

Reinforcement learning — \A/';Hl by training neural net.

@ Rollout — Vk+1 from base policy.

o Model-predictive control (MPC)
o Open-loop feedback control (OLFC)
o Parallel rollout (multiple base policies)

Hindsight optimization — Vk+1 by optimizing action sequence
per sample path.

See, e.g., Bertsekas' ADP book (2012).
Also [Chong, Kreucher, and Hero (DEDS 2009)].

CCC 2021 12 / 39

Technical Approach

Overview of approach

Goal: Bound the performance of an ADP scheme.

Approach:
1. Prove key bounding theorem for greedy schemes.

e Bound depends on curvature of objective function.

2. Apply key bounding theorem to derive bounding result for
ADP.
3. Develop method to estimate curvature.

e Use Monte Carlo sampling.
e Must be computationally “easy.”

CCC 2021 13 / 39

Technical Approach

What kind of bound?

Recall goal: Bound the performance of an ADP scheme.

Form of result: “Objective function value of ADP scheme
relative to optimal is no worse than ..."
Two kinds:

o Difference between values of ADP and optimal policy.
e Ratio of values of ADP and optimal policy.

o Normalized difference bound = ratio bound.
Difference bound: See Bertsekas' textbook (2017).

Here: Ratio bound.

CCC 2021 14 / 39

Technical Approach

General string-optimization problem

Temporarily put optimal control and ADP aside.

Instead, consider general string-optimization problem.

A — set of symbols.

A = ajay - - ap — string of symbols with length |A| = k.

A — set of all possible strings of length up to K,
including empty string @. (Uniform matroid of rank K.)

f: Ag — R4 — objective function. WLOG, f(2) = 0.
maximize f(A)
subject to A € Ag.

(]

CCC 2021 15 / 39

Technical Approach

More terminology and notation

@ Terminology and notation used in discrete event systems.

e Given A =ajay---ay and B = biby---b,) in Ak, define
concatenation: A® B := a1+ - amby...by,.

o Ais a prefixof C if C = A® B. Notation: A < C.

e fis prefix monotone if VA=< B e Ak, f(A) < f(B).

@ fis subadditiveif VA<B € Ak and a € A,
f(B®(a)) — f(B) < f(A® (a)) — f(A).

@ Subadditivity also called diminishing-return property.

CCC 2021 16 / 39

Technical Approach

Optimal and greedy solutions

@ Default assumption: f prefix monotone
= J optimal solution with length K.

e Optimal solution: O = (o1, ...,0K).

e Greedy solution: Gx = (91,92, .., 9K) is called greedy if
Vk=1,2,....K,

gr = argmax f((g91,92,. ., 9k—1,0)).
a€A

o Greedy scheme = At each time, select best symbol
independently of other times.

CCC 2021 17 / 39

Technical Approach

Curvatures

@ Recall goal: Introduce general theorem on bounding greedy
schemes for string optimization.

Ratio bound: f(Gk)/f(Ok) > ...
Bound depends on certain numbers called curvatures.

Two types: forward curvature and total curvature.

Notation: Given any A = (aq,as,...,a;) € Ax and
1,] € {1, e]{7}, denote Ai;j = (CLZ', - ,aj) if i <j and
A;j =@ if i > j (MATLAB notation).

CCC 2021 18 / 39

Technical Approach

Forward curvature

@ Define forward curvature of f as

o B f(G1: @ (05)) — f(G14))
7T odidieK (1 [(G1: @ Oiq15) — f(G1i © Oiy15-1)

where G1.g := & and Oi+1:i = for all i € {0, o, K= 1}
@ Expression akin to a normalized second-order difference.

e To see this, complete the fraction.
e 0 = bound on normalized second-order difference.

@ f prefix monotone = 0 < o < 1.
e f subadditive = o = 0.

CCC 2021 19 / 39

Technical Approach

Total curvature

o Define total curvature of f as

= Imnhax "
L 1<i<k-1 K — 14
G170

K 1 f(G1:i ® Oiy1:1) — K;;if(OK)
f(Gl:i)

e f prefix monotone = 1 < f(Ok)/f((g91)).
@ f subadditive = n > 0.

CCC 2021 20 / 39

Technical Approach

Key bounding theorem

Key bounding theorem. Given f : Ax — R prefix monotone,

o Slightly stronger than in [LCPZ (LCSS 2020)].

@ Inspired by bounds in submodular optimization theory (orig.
[Nemhauser (1978)]), akin to convex optimization.
@ Submodular = prefix monotone and subadditive.
o See survey paper [LCPZ (DEDS 2020)] and its references.

CCC 2021 21 /39

Technical Approach

Remarks on key bounding theorem

@ Key bounding theorem does not require submodularity.
e Bound is tight.

@ Both curvatures involve Og. Best we can do is bound
curvatures from above (discussed later).

@ Bound is decreasing in 0 and n < K/(1 — o).
.. If replace o and i by upper bounds, theorem still holds.

@ Asn\,0, bound "1 —o0.
e As K — oo, bound ™\, (1 — e*"(lfﬂ)) /.
o If o =0 and n =1, then limit = (1 —e™1).

e Familiar in submodular optimization theory;
e.g., [Nemhauser (1978)].

CCC 2021 22 /39

Bounding ADP Schemes

Key idea

Now back to optimal control and ADP.

Recall optimal-control objective function:

K

> Elr(a, mi(zr)|21]

k=1

Decision variable: (7,...,7k).
o Key idea: Given an ADP scheme,

e define associated string-optimization problem,
e then apply key bounding theorem.

String: (m1,...,7K).

Here, symbol = policy.

CCC 2021 23 /39

Bounding ADP Schemes

String-optimization problem for optimal control

o Define (for k=1,...,K — 1 and Vx1(-,-) == 0)
(1o} = 3 Bl ma(aln] + ElViss (o (o)l
Bl (o) + Vora (ot o)l
&3 Bl mw))

=1

@ When k = K, f becomes objective function for original
optimal-control problem (expected cumulative reward).

° ’Maximizing f solves optimal-control problem.‘

CCC 2021 24 / 39

Bounding ADP Schemes

Greedy policy-selection scheme for optimal control

e Define greedy policy-selection (GPS) scheme: For
k=1,... . K,

77 = argmax E[r(z},n(z i))+vk+1($i,7r($i))|$l]

T

(@), w), i=1,...,k—1,

where z¥, | = h(z], 7] (2?

and x = z1 (given).

GPS scheme is greedy scheme for f. ‘

@ Thus, key bounding theorem applies.

CCC 2021 25 /39

Bounding ADP Schemes

ADP scheme for optimal control

@ Recall ADP scheme: For k=1,..., K,

7(21) := argmax {r(Zp, u) + Vis1 (&g, u)}

where i'i—&-l = h(.@,,ﬁ'z(ﬁfl), wi) for i = 1, ey k—1,
&1 = x1 (given), and Vi 1(-,-) := 0.
@ Looks just like GPS except:
e argmax is over control action u € U

o No expectation (E)

CCC 2021 26 / 39

Bounding ADP Schemes

ADP is also GPS

@ ADP control action depends on state trajectory.

@ But ADP scheme still defines a particular policy.

Any ADP scheme is also a GPS scheme.

Proof: By induction on k.

@ ADP scheme is also greedy scheme for f.

° ’ Key bounding theorem applies to ADP scheme. ‘

CCC 2021 27 / 39

Bounding ADP Schemes

Bounding ADP

Combining the previous ideas, we get our main result:

Theorem

Let (n7,...,m}) be an optimal policy. If f is prefix monotone,
then any ADP policy (71, ..., 7k) satisfies

f((71,...,TK)) 1 _ _ 1—o\X
f((ﬂi‘7--~,ﬂ?<))2n<1 (10")

where n and o are curvatures of f.

But how to compute or estimate i and o?

CCC 2021 28 / 39

Curvature estimation

Upper bound for curvature

Given f, estimate upper bounds for curvatures n and o.
e Recall: Cannot compute curvatures exactly because they
involve Og.
e Key bounding theorem applies to upper bounds on curvatures.

Focus on 7 (similar treatment applies to o).

By definition of 7, immediate upper bound given by

K f(Gri ® Aip1x) — BZEf(A)
(1 a f(G14) .)

n < max -
Aehg, A=K K —i
1<i<K—1

Computing G is easy.

But max over (A, i) probably hard because of A € A.

CCC 2021 29 /39

Curvature estimation

Approach

@ Use Monte Carlo sampling to estimate upper bound 7.
e Want % correct with high probability.

@ Curvature-estimation algorithm:
Given €,d € (0,1), output 7 with the following desired
properties relative to true curvature 7:

P{n>(1—-¢)n} =1 (7 not too large)
P{n<n}>1-6 (7 not too small).

@ Related work: Testing submodularity for order-agnostic
problems [Parnas and Ron 2002], [Sheshadhri and Vondrak
(2010)], [Blais and Bommireddi (2016)].

CCC 2021 30 /39

Curvature estimation

Curvature-estimation algorithm

1. Generate J samples si,...,s; where s; = (A(j),4(j)),
A(j) € Ak, |A(j)| = K,and 1 <i(j) < K — 1.

2. For each sample s, define H(s) :=

K (1 (Gt ® Aoy (5)) - K}i(‘“")f(A(s)))

K - Z(S) f(Glz(s))
3. Output
L 1 '
= (1 - 5> 121]%]]{(8])'

CCC 2021 31 /39

Curvature estimation

Properties

@ Our algorithm automatically satisfies first property:
P{n> (-2} =1.
@ Does it satisfy second property:
P{n<n}>1-4?

Depends on ¢, §, sampling distribution, and number of
samples J. Also depends on distribution of f if we view f as
random.

@ Fix €, 4, sampling distribution, and distribution of f.
Treat J as variable.

CCC 2021 32 /39

Curvature estimation

Sample complexity

e Exhaustive search: J = total number of possible pairs (A4, 7).
o J=|AK(K —1) (ie., scaling law is exponential in K).
o |A| might be exponential in some other problem parameter
(e.g., number of states).
e Exponential in problem size = impractical.
e Sample complexity of algorithm: Number of samples J needed
to satisfy second property P{n <7} >1—4§ (or
P{n < n} < §; i.e.,, § = constraint on prob. of error).
@ Sample complexity must be small relative to exhaustive search
(e.g., J = polynomial in problem size).

@ Turns out not too difficult.

CCC 2021 33 /39

Curvature estimation

Probability of error

o Need J sufficiently large for P{5; < n} <.
o Recall:

VA — Hi(s:).

(L—e)h nax, (s5)

@ Therefore,

Pl <) =P { max Hs) < (1=

=P{Vj=1,...,J, H(sj) < (1—e)n}

i.e., probability that all J samples erroneous.
o Will decrease as J increases.

CCC 2021 34 /39

Curvature estimation

Example: i.i.d. sampling

@ Suppose sampling is i.i.d.
@ Using previous equation with p(e) := P{H(s;) > (1 —¢)n}
(probablity of correct sample),

P{n<nt=P{Vj=1,...,J, H(sj) < (1 —¢)n}

J
= [[P{H(s) < (1 =2}
j=1

= (1-p()”.
o Taking natural log, sample complexity given by
log(1/9)

— —log(1—p(e))

CCC 2021 35 /39

Curvature estimation

Example: i.i.d. sampling (cont.)

e Simplify using inequality
1 1
< .
—log(1—p(e)) ~ p(e)

@ We get the following simple sufficient condition on J:

log(1/9)
T2 TE

@ Sample complexity increases with decreasing 6 and p(¢).
o As expected.

CCC 2021 36 / 39

Curvature estimation

Example: uniform sampling

@ Suppose sampling is uniform i.i.d.

@ Then p(e) = fraction of possible samples s such that
H(s) > (1 —¢€)n; i.e., all possible samples for which H(s) is
within a factor of (1 — ¢) of its maximum possible value.

@ Recal: Usually express sample complexity in terms of scaling
law as problem size grows.

@ Reasonable assumption: As problem size grows, p(e) = (1)
(i.e., bounded away from 0).

@ This implies that sample complexity is O(1) (i.e., bounded).

@ Even if p(e) decreases polynomially, sample complexity grows
only polynomially.

CCC 2021 37 /39

Curvature estimation

Summary

Alas, time's up!

@ Introduced method to bound performance of ADP schemes.
@ Showed derivation and key results.

@ Described algorithm to estimate curvature and analyzed
sample complexity.

e No time to show practical examples. (Future talk ...)

CCC 2021 38 /39

Curvature estimation

Questions?

edwin.chong@colostate.edu
www.edwinchong.us

CCC 2021 39 /39

	Introduction
	Technical Preliminaries
	Technical Approach
	Bounding ADP Schemes
	Curvature estimation

